
Training Classification model with BangDB CLI

Use case: Credit Risk Analysis
Source: Kaggle (https://www.kaggle.com/sonujha090/xyzcorp-lendingdata)
Expected time to complete the exercise : 15 min

Introduction:

This document is a guide which provides an introductory overview of the Classification algorithm
workflow. Here will be taking an example to demonstrate how classification models are trained
for a better understanding.
Users can try these use cases as they go through this guide; this will help in getting familiar with
the workflow. To do this Users have to set up the BangDB server and CLI first.

Users can download BangDB from https://bangdb.com/download/ and follow the instructions on
https://bangdb.com/server-install/ to install and start the server and CLI.

Please also check https://bangdb.com/developer/ for more information.

Get Started with ML through CLI:

The objective of this document is to introduce users to “the methods and Queries for ML model
training using CLI”. it will help users

● To understand how to train Classification in-build models
● To understand the hyperparameters
● To understand the training details required for training Classification Model

Use-case: Credit Risk Analysis

Problem statement:

In this project, we have to manage credit risk by using the past data and deciding whom to give
the loan in the future. The data file contains complete loan data for all loans issued between
2007-2015. The data contains the indicator of default, payment information, credit history, etc.
The data is divided into training and test data. We have used the training data to build a model
and finally applied it to test data to measure the performance and robustness of the models.

Objective:

To build a machine learning model to detect load defaulters.

https://www.kaggle.com/sonujha090/xyzcorp-lendingdata
https://bangdb.com/download/
https://bangdb.com/server-install/
https://bangdb.com/developer/

Data description:

The dataset contains 855969 events with 73 attributes (containing both categorical and
numerical data). Total number of defaulters are 46467 out of 855969 which is approx 6% of the
total. This clearly is a case of an imbalanced class problem where the value of class is far less
than the other.

Data processing: The percentage of missing data in many columns are more than 75%. So,
we’ll have to remove columns having less than 75%. 2 attributes have only 1 unique value and 7
attributes are highly correlated to each other. We are also dropping columns like id, member_id ,
zip, title etc as they play no role in model training. In the final dataset we have 29 attributes.

Algorithm:

The given problem is a classification problem. To solve it, we will be using the Support Vector
Classifier algorithm (SVC) with weights to deal with class imbalance. Why SVM, because SVM
is more effective in high dimensional spaces and SVM is relatively memory efficient.

Approach:

There are three ways to train a model on bangdb.

1. One is to directly register the meta_data for training (we call it json request which
contains all the details about the model),

2. second is to create mage_data for training by following the workflow on CLI and the last
one is to train using api’s.

Here we will be training the model using CLI.

On bangdb, we have the option of training a model from a file(file format can be libSVM, CSV
or JSON) containing training data or from streaming data. Here we are training the model from a
CSV file.

Assuming that CLI and Server are running, let's go and train the model

Train the model

Method One : Use the CLI train model workflow

1. Enter command “train model model_name” :- train model model_dft
Here the workflow starts. User just have to enter the training details:

STEPS AND PARAMETER EXPLANATIONS FOR THE CLI WORKFLOW FOR TRAINING

2. What's the name of the schema for which you wish to train the model?: sml
[Enter the schema, its user define -name of the schema where user want to apply model]

3. Do you wish to read the earlier saved ml schema for editing/adding? [yes | no]: no

Here we will get a list of all the algorithms supported. As we have to perform Classification, we will be
selecting classification option for next command

4. what's the algo would you like to use (or Enter for default (1)): 1
5. svm type [C_SVC (0) | NU_SVC (1) | ONE_CLASS (2)] : 0

[For classification, we have 3 types of SVC. According to the form of error function, SVC models
can be classified into Two distinct groups: Classification SVM Type 1 (also known as C-SVM
classification) and Classification SVM Type 2 (also known as nu-SVM classification). First and
second are for both multi and single classification but the third one “ONE-CLASS” is for binary
classifications only]

6. kernel type [LINEAR (0) | POLY (1) | RBF (2) | SIGMOID (3)]: 2
[set type of kernel function

0 -- linear: u'*v
1 -- polynomial: (gamma*u'*v + coef0)^degree
2 -- radial basis function: exp(-gamma*|u-v|^2)
3 -- sigmoid: tanh(gamma*u'*v + coef0)]

7. degree (press enter for default (3): 2
[polynomial kernel parameter]

8. enter gamma (or press enter for default (0.001)): 0.002
[kernel parameter]

9. enter C (or press enter for default): 2
[algorithm parameter : Penalty factor of misclassification.]

10. enter nr_weight (or press enter for default):
11. enter nu (or press enter for default):

[Users can neglect there two as they are user in NU-SVC not in C-SVC]

12. enable shrinking? [yes | no]: no
[The shrinking is there to save the training time.]

13. enable probability? [yes | no]: no
[For probability estimate]

14. what's the stopping criteria (eps) (or press enter for default (0.001)): 0.1
[Set tolerance of termination criterion]

15. What's the input (training data) source? [local file (1) | file on BRS (2) | stream (3)]: 1
[Here, users have to specify the source of data whether it's a file store in the local system or
in BRS or its streaming data. For this use-case, the training file is store in local system]

16. enter the file name for upload (along with full path): <enter path of file "loan_train.csv”>

17. enter the data format for the training data [libSVM (0) | CSV (1) | JSON (3)]: 1
[Here, users have to define the format of the training data file]

18. What is the separator (SEP) for the csv file?: ,
[As we are training from CSV file format with separator “ , ”]

19. what is the target index (to select the target attribute/val): 0
[Here, we have no specify position of target attribute]

20. what's the training speed you wish to select [Very fast (1) | fast (2) | medium (3) | slow (4) |
very slow (5)] (or Enter for default (1)): 5

[Here, usres defines the speed for reaching optimization, higher the speed training time is longer]

BangDB deals with categorical data on its own by converting categorical to numerical, users just have to
select the proper attribute type in the option below.

21. what's the attribute type [NUM (1) | STRING (2) | HYBRID (3)] (press enter for default (1): 1
[Users have to specify the nature of attributes present in the training file. If all attributes are
numerical then select option 1, if all are string select 2 and for both categorical and numerical
select 3.]

22. do you wish to scale the data? [yes | no]: yes
[Scaling data is very necessary for SVM]

23. do you wish to tune the params? [yes | no]: yes
[Here, If user select yes for tuning, in the backend grid search is performed to find best values for
gamma and C]

Next, we need to do the mapping. This means we need to provide attribute name and its position in the
training file and define which is the target attribute (target attribute is represent by position 0)

24. enable attr name: loan_status
enable attr position: 0
do you wish to add more attributes? [yes | no]: yes

25. enable attr name: loan_amt
enable attr position: 1
do you wish to add more attributes? [yes | no]: yes

…………...
…………...

Aftering entering all attributes

26. Do you wish to add more attributes? [yes | no]: no

27. Do you wish to add external udf to do some computations before the training? [yes | no]:
no

Here, we can view the meta_data which we created for training.

updated schema :

{
"attr_list" : [

{
"name" : "loan_status",
"position" : 0

},
{

"name" : "loan_amt",
"position" : 1

},
…………..
],

"model_name" : "creditRisk",
"schema-name" : "sml",
"algo_param" : {

"probability" : 0,"degree" : 2,"kernel_type" : 2,"nr_weight" : 1,"shrinking" : 0,"cost" : 2,
"termination_criteria" : 0.1,
"svm_type" : 0,
"gamma" : 0.002

},
"attr_type" : 1, "tune_params" : 1, "scale" : 1, "algo_type" : "SVM",
"training_details" : {

"train_speed" : 5,"input_format" : "CSV","training_source_type" : 1,"file_size_mb" : 1
,"SEP" : ",","expected_format" : "SVM",

"target_idx" : 0,
"training_source" : "loan_train.csv"

}

28. Do you wish to start training now? [yes | no]: yes

schema [sml] registered successfully for training
you may check the train status by using 'show train status' command ------training started

To check training status enter
show status where schema = “sml” and model = “model_name"

Training status 25 represents that the training is completed.

For more info on ML, please visite https://bangdb.com
● For more commands enter “help ml”

https://bangdb.com

Method two : training model by uploading training request (training meta-data)

Step 1. Prepare a file containing training meta-data
Here, we have create a json file name model1.json and we have created the training request:
Training request: (user can copy and paste the below training request)

{"schema-name":"sml","model_name":"criditRisk","algo_type":"SVM","algo_param":{"svm_type":0,"kernel
_type":2,"degree":2,"gamma":0.002,"cost":2,"shrinking":0,"probability":0,"termination_criteria":0.1},"trainin
g_details":{"training_source":"loan_train.csv","file_size_mb":1,"training_source_type":1,"input_format":"C
SV","SEP":",","expected_format":"SVM","target_idx":0,"train_speed":5},"attr_type":1,"scale":1,"tune_para
ms":1,"attr_list":[{"name" : "loan_status","position" : 0},{"position" : 1,"name" : "load_amt"},{"name" :
"funded_amnt","position" : 2},{"name" : "funded_amnt_inv","position" : 3},{"name" : "term","position" :
4},{"name" : "int_rate","position" : 5},{"name" : "installment","position" : 6},{"position" : 7,"name" :
"grade"},{"name" : "home_ownership","position" : 8},{"name" : "verification","position" : 9},{"name" :
"pymnt_plan","position" : 10},{"name" : "mths_lastdelinq","position" : 11},{"name" : "revol_bal","position" :
12},{"position" : 13,"name" : "out_prncp"},{"name" : "out_prncp_inv","position" : 14},{"name" :
"total_pymnt","position" : 15},{"position" : 16,"name" : "total_pymnt_inv"},{"position" : 17,"name" :
"total_rec_prncp"},{"name" : "total_rec_int","position" : 18},{"position" : 19,"name" :
"total_rec_late_fee"},{"name" : "recoveries","position" : 20},{"position" : 21,"name" :
"collection_recovery_fee"},{"position" : 22,"name" : "last_pymnt_amnt"},{"position" : 23,"name" :
"policy_code"},{"name" : "tot_coll_amt","position" : 24},{"name" : "tot_cur_bal","position" : 25},{"position" :
26,"name" : "total_rev_hi_lim"}]}

Step 2. Enter command train model from model-meta-data
[Model-meta-data = is the location of the file containing the meta data for training with its file name.

From here the cli workflow will start]

After entering the above command the training request in the file will be displayed on the screen
Step 3. Cli will ask the path for training file on the system

upload file : loan_train.csv
enter the path for upload (full path of the file):
[provide the training file path with file name]

Step 4. Do you wish to start training now? [yes | no]: yes
[Enter yes to start training]

The User has to understand that the training time taken depends on a lot of factors (like the parameter
selected, size of data, bangdb setting etc..)

Once the training is started user can check the train status by using 'show train status' command

Step 5. show status where schema = "sml" and model = "criditRisk"

For more info on ML, please visite https://bangdb.com

Predict using the model

For prediction, user have to enter command “pred model model_name”, then we just have to
enter details:-

STEPS FOR THE CLI WORKFLOW FOR PREDICTION

1. Enter the command “pred model cridetRisk”

2. What's the name of the schema for which model was trained?: sml

3. Do you wish to see the train request? [yes | no]: no

model algo type is [SVM], it needs [HYB] data type with [LIBSVM] input data format

[Above comment will be displayed on the CLI, giving info about the model, its attribute type and because
the file format required for SVM is LIBSVM, therefore all SVM models show input data format as LIBSVM.
User can provide any one among the supported file formats, the file will be converted to required format]

4. What is the input data format for the given pred file [LIBSVM (0) | CSV (1) | JSON (3)]
(press Enter for default 1): 1
[As our test file is in CSV, we will select 1]

5. What is the separator (SEP) for the csv file?:
[we have to mention the SEP for CSV test file]

6. Do you wish to provide an attribute list? [yes | no]: no
[in cases where arrangement of attributes are different while training and prediction]

7. Do you wish to consider the target (are you also supplying target value?) [yes | no]: no
[we select this when have target within test data]

8. Do you wish to pred the file? Or a single event? [yes (file) | no (single event)]: yes

9. Do you wish to upload the file? [yes | no]: yes

10. Enter the test file name for upload:<enter path of file loan_test.csv>

11. Once it's done, we can download the test file

Result:

● The time taken for training was approx 5 sec.
● The User has to understand that the training time taken depends on a lot of factors (like

the parameter selected, size of data, bangdb setting etc..)
● The best value of C = 0.031225 and gamma = 0.000122
● The model Accuracy = 86.99%

--

