Training Clustering model with BangDB CLI

Use case: Credit Card Data Clustering Analysis
Source: Kaggle (https://www.kaggle.com/arjunbhasin2013/ccdata)
Expected time to complete the exercise : 25 min

Introduction:

This document is a guide which provides an introductory overview of the Clustering algorithm
workflow. Here will be taking an example to demonstrate how classification models are trained
for a better understanding.

Users can try these use cases as they go through this guide; this will help in getting familiar with
the workflow. To do this Users have to set up the BangDB server and CLI first.

Users can download BangDB from https://bangdb.com/download/ and follow the instructions on
https://bangdb.com/server-install/ to install and start the server and CLI.

Please also check https://bangdb.com/developer/ for more information.

Get Started with ML through CLI:

The objective of this document is to introduce users to “the methods and Queries for ML model
training using CLI”. it will help users

e To understand how to train Kmeans in-build models

e To understand the hyperparameters

e To understand the training details required for training kernel k-means Model

Use-case: Credit Card Data Clustering Analysis
Problem statement:

This case requires developing a customer segmentation to define marketing strategy. The
Dataset summarizes the usage behavior of about 14360 active credit card holders during the
last 6 months. The file is at a customer level with 18 behavioral variables.

Objective:

Build a model to perform customer segmentation.

https://www.kaggle.com/arjunbhasin2013/ccdata
https://bangdb.com/download/
https://bangdb.com/server-install/
https://bangdb.com/developer/

Data description:

The dataset contains 14360 events and 18 attributes. The dataset consists of both continuous
as well as categorical attributes. The columns are CUST/D,BALANCE,BALANCEFREQUENCY,
PURCHASES, ONEOFFPURCHASES, INSTALLMENTSPURCHASES, CASHADVANCE,
PURCHASE FREQUENCY, ONE OFF PURCHASE FREQUENCY, ONE OFF PURCHASE
FREQUENCY,CASH ADVANCE, PURCHASE FREQUENCY, ONE OFF PURCHASE
FREQUENCY, PURCHASE INSTALLMENTS FREQUENCY, CASH ADVANCE FREQUENCY,
CASH ADVANCE TR, PURCHASE TRX, CREDIT LIMIT, PAYMENTS,
MINIMUM_PAYMENTS, PRC FULL PAYMENT, TENURE.

Algorithm:

We have to do customer segmentation for the given problem. To do this we are selecting the
kernel k-means algorithm(KKmeans). In kernel k-means before clustering, points are mapped
to a higher-dimensional feature space using a nonlinear function, and then kernel k-means
partitions the points by linear separators in the new space.

Approach:

There are two ways to train a model on bangdb.

1. One is to directly register the meta_data for training (we call it json request which
contains all the details about the model),
2. The second is to create mage_data for training by following the workflow on CLI

Here we will be training the model using CLI in both ways.

On bangdb, we have the option of training a model from a file(file format can be libSVM, CSV
or JSON) containing training data or from streaming data. Here we are training the model from a
CSV file.

Assuming that CLI and Server are running, let's go and train the model

Train the model

Method One : Use the CLI train model workflow

1. Enter command “train model model_name” :- train model cstseg
Here the workflow starts. User just have to enter the training details:

STEPS AND PARAMETER EXPLANATIONS FOR THE CLI WORKFLOW FOR TRAINING

2. What's the name of the schema for which you wish to train the model?: sml
[Enter the schema, its user define -name of the schema where user want to apply model]

3. Do you wish to read the earlier saved ml schema for editing/adding? [yes | no]: no
Here we will get a list of all the algorithms supported displayed on the cli.

4. What's the algo would you like to use (or Enter for default (1)): 4
[option 4 represent Kernel K-means algorithm]

5. Dimension (num of attributes): 17
[Numbers of attributes in data.]

6. Number of centers: 4
[polynomial kernel parameter]

7. Number of rows/dictionary - approx value (press Enter for default 10000): 1000
[Controls the trade-off between the accuracy and number of stored dictionary vectors.
Dictionary vectors are used to represent the centroid.]

8. Enter gamma (or press enter for default (0.001)): 1
[Kernel parameter]

9. What's the stopping criteria (eps) (or press enter for default (0.001)): 1
[The termination criteria affects the number of iterations used when optimizing the model]

10. What's the input (training data) source? [local file (1) | file on BRS (2) | stream (3)]: 1
[Here, users have to specify the source of data whether it's a file store in the local system or
in BRS or its streaming data. For this use-case, the training file is store in local system]

11. enter the file name for upload (along with full path): <enter path of file “/cust_seg.csv”>

12. enter the data format for the training data [CSV (1) | JSON (3)]: 1
[Here, users have to define the format of the training data file]

13. What is the separator (SEP) for the csv file?: ,

[As we are training from CSV file format with separator “,”]

14. What's the training speed you wish to select [Very fast (1) | fast (2) | medium (3) | slow (4) |
very slow (5)] (or Enter for default (1)): 5

BangDB deals with categorical data on its own by converting categorical to numerical, users just have to
select the proper attribute type in the option below.

15. What's the attribute type [NUM (1) | STRING (2) | HYBRID (3)] (press enter for default (1): 1
[Users have to specify the nature of attributes present in the training file. If all attributes are
numerical then select option 1, if all are string select 2 and for both categorical and numerical
select 3.]

16. Do you wish to scale the data? [yes | no]: yes
[Scaling data is very necessary for KKmeans |

Next, we need to do the mapping. This means we need to provide the attribute name and its position in the
training file. We need to add mapping for [18] attributes as we have so many dimensions.

17. Enable attr name: a1
enable attr position: 0

Aftering entering all attributes
Here, we can view the meta_data which we created for training.

updated schema :

{
"algo_param" : {
"termination_criteria" : 1,
"dim" : 17,
"kernel_type" : 2,
"num_centers" : 4,
"kmeans_type" : 1,
"max_dict_size" : 1000,
"gamma" : 1
b
"training_details" : {
"SEP": ",",
“"input_format" : "CSV",
"file_size_mb" : 1,
"train_speed" : 5,
"expected_format" : "CSV",
"training_source" : "cust_seg.csv",
"training_source_type" : 1

}a

"model_name" : "cstseg",
b
"attr_list" : [
{
llnamell : Ila1ll,
"position" : 1

b
{
"position" : 2,
llnamell : lla2ll

"algo_type" : "KMEANS",
"schema-name" : "sml",
"attr_type" : 1,

"scale" : 1

18. Do you wish to start training now? [yes | no]: yes

schema [sml] registered successfully for training
you may check the train status by using 'show train status' command ------ training started

To check training status enter

show status where schema = “sml” and model = “model_name"
Training status 25 represents that the training is completed.

For more info on ML, please visite https://bangdb.com

https://bangdb.com

Method two : training model by uploading training request (training meta-data)

Step 1. Prepare a file containing training meta-data
Here, we have create a json file name km.json and we have created the training request:
Training request: (user can copy and paste the below training request)

{"schema-name":"sml","model_name":"cstseg","algo_type":"KMEANS","algo_param":{"kmeans_type":1,"k
ernel_type™:2,"dim":17,"num_centers":4,"max_dict_size":1000,"gamma":1,"termination_criteria":1},"trainin
g_details™:{"training_source™:"cust_seg.csv","file_size_mb":1,"training_source_type":1,"input_format":"CS

V" "SEP":",","expected_format":"CSV","train_speed":5},"attr_type":1,"scale":1,"attr_list":[{"name":"a0","pos
ition":0},{"name":"a1","position":1},{"name":"a2","position":2},{"name":"a3","position":3},{"name":"a4","posit
ion":4},{"name":"a5","position":5},{"name":"a6","position":6},{"name":"a7","position":7},{"name":"a8","positi

on":8},{"name";"a9","position":9},{"name":"a10","position":10},{"name":"a11","position":11},{"name":"a12","

position":12},{"name":"a13","position":13},{"name":"a14","position":14},{"name":"a15","position":15},{"nam

e":"a16","position":16}]}

Step 2. Enter command train model from model-meta-data
[Model-meta-data = is the location of the file containing the meta data for training with its file name.
From here the cli workflow will start]

After entering the above command the training request in the file will be displayed on the screen
Step 3. Cli will ask the path for training file on the system
upload file : cust_seg.csv
enter the path for upload (full path of the file):
[provide the training file path with file name]

Step 4. Do you wish to start training now? [yes | no]: yes
[Enter yes to start training]

The User has to understand that the training time taken depends on a lot of factors (like the parameter
selected, size of data, bangdb setting etc..)

Once the training is started user can check the train status by using 'show train status' command
Step 5. show status where schema = "sml" and model = "criditRisk"

For more info on ML, please visite https://bangdb.com

Result:

e Time required for the training of the model is 5 min.

e The User has to understand that the training time taken depends on a lot of factors (like
the parameter selected, size of data, bangdb setting etc..)

As opposed to classification, it is difficult to assess the quality of results from clustering. Here, a
metric cannot depend on the labels but only on the goodness of the split. Secondly, we do not
usually have true labels of the observations when we use clustering.From the result of the
segmentation model, we can see that all customers have been separated into different clusters
perfectly.

