NoSQL or SQL Database: What is Best for My Application?
Published on Sep 04, 2021

NoSQL or SQL Database: What is Best for My Application?

Developers are asking NoSQL or SQL what is best for my application? Get answers to the three most important factors to help you decide.

NoSQL or SQL Database: What is Best for My Application?

There is no hard and fast rule on when to use a SQL database versus when to use a NoSQL database. Instead, determining your cloud data storage components requires taking a deep dive into the data you’ll be reading, writing and storing. Answering the questions NoSQL or SQL what is best for my application will take several steps.

But you also need to consider what you need your data to do for you. As the expectations for data processing continue to increase, SQL databases are struggling to keep up. That’s why you’re likely hearing more about NoSQL and its capabilities.

How to Decide Between a SQL and NoSQL Database

To answer the question of what is best for my application, you need to evaluate several factors. We’ll walk you through these factors and explain how they could impact your decision between SQL and NoSQL.

1. Data Structure

The most important consideration when evaluating which is best SQL or NoSQL is in evaluating your data’s structure. 

When most of your data is structured, you should use a SQL database. Applications that run transactions such as e-commerce platforms, CRMs and accounting systems lend themselves to SQL well. 

Ideal SQL Database Structure

Within a SQL database, each row designates an entity, such as a customer. And within that row you can add other attributes, such as that customer’s name, phone number and mailing address. 

Because of this structure, SQL databases are ideal when you need ACID compliance (though some NoSQL databases are ACID-compliant). The compliance protocols protect your data and define what a transaction is and how that transaction impacts your database. That way, you know reliably that the data will be in sync. That guarantees that important transactions are accurate and logged correctly. The only option for SQL databases is relational or analytical (OLAP). 

Ideal NoSQL Database Structure

In contrast, when your data requirements are not as structured, NoSQL is an ideal choice. Data within NoSQL databases can be much more flexible and use a multi-model approach. Within these databases, you can organize your data in the following structures.

  • Key-value
  • Column
  • Graph
  • Document

These formats enable you to accomplish the following actions.

  • Write documents without defining their structure at the onset
  • Create additional fields in the database without changing existing field names
  • House documents in any structure, even a completely unique one
  • Organize data in multiple databases using different structures and syntax

While SQL is good for transactional data, NoSQL is good for storing content data, like articles or social media posts. Really, when looking at SQL or NoSQL the question is whether you need structured, unstructured or semi-structured data. And unless you need structured data, you want to use NoSQL.

NoSQL or SQL what is best for my application

2. NoSQL vs SQL for Data Queries

Once you understand your data’s structure, you need to move onto evaluating your need for data queries. But the question isn’t just whether you need to query data, but how fast you need those queries to execute and who is responsible for executing such queries.

Due to the structure within SQL databases, you can query data with great ease. Although tedious, SQL language has been around for decades. The language is mature and has plenty of resources to support it.

As a result, SQL databases are incredibly easy to query and get data back from quickly. The language is lightweight, and although tedious, it’s easy to learn. 

Because NoSQL is flexible and lacks that tidy organized structure, querying the data can present some challenges. It’s certainly possible to query these databases, but it isn’t as efficient and takes a bit more expertise. 

Developers that created the concept for NoSQL were seeking out flexible, scalable solutions. Their goal was not to find an efficient query structure. 

The result of the flexibility and scalability of NoSQL is that you’ll need to undergo more data processing to complete a query. Some developers build in the ability to query their data within the application layer instead of the database layer to simplify the process. 

But as NoSQL becomes more popular, many developers and data scientists are skilled at efficiently querying the data. Deciding how and how often to query your data will answer the question should I use SQL or NoSQL?

3. SQL vs NoSQL Database Scalability

SQL and NoSQL databases scale differently. So before you build out your application, consider your growth needs. How will your data expand and transform in the future of your application?

SQL databases only scale vertically, which means you need to keep all your data on one server and upgrade the server to meet your needs. That means increasing RAM, SSD or CPU to accommodate changes. Protecting the integrity of your data means keeping it all on one server. 

However, NoSQL databases can scale horizontally, which means you can add additional servers to meet your growing needs. The ability to scale horizontally is one of the greatest strengths of a NoSQL database compared to a SQL database.

NoSQL can scale so well because of its lack of structured data. Each object within the database is independent, meaning the objects can be in different server locations and don’t need to be linked for the database to function. But SQL data is organized in rows and columns that rely on one another for their relational data. 

The best way to determine your scaling needs for your database is to evaluate your business goals. And when you do this, don’t look a couple of years in the future, but as far as you possibly can because changing databases for your application will be a timely and costly initiative. 

NoSQL or SQL what is best for my application?

Where SQL and NoSQL Databases Converge

As NoSQL databases develop and mature, they’re blurring the lines between NoSQL and SQL. Remember that NoSQL stands for not only SQL. That means that some data within these databases can be structured. 

Many NoSQL databases now offer a convergence of structured and unstructured data. For example, many developers now look at MongoDB SQL or NoSQL because you have options now even once you select a database partner. Many NoSQL databases can now offer ACID transactions to meet your needs.

BangDB offers a multi-model approach to data and layers in AI to make data easier to query. Machine learning is transforming NoSQL databases to make them more intelligent and simpler to operate.

Many applications that could only run on SQL databases before can now transition to NoSQL thanks to the power of artificial intelligence. 

The question today is less about SQL vs. NoSQL and more about evaluating which NoSQL database is right for your application. That’s because, given the trajectory of data logging, SQL databases cannot house the amount of ever-growing data efficiently. Very few applications require SQL databases today thanks to new developments and innovations in the NoSQL marketplace.

Data integrity within NoSQL continues to improve but is one area where SQL reigns supreme. However, NoSQL is far more flexible, scalable and poised for rapid iteration and development.

Still asking the question: NoSQL or SQL what is best for my application? Contact our team to learn more about what the BangDB database can do.


Can NoSQL Database be Transactional?
Can NoSQL Database be Transactional?
Many NoSQL databases are now able to serve as a transactional database. A brief history of NoSQL & A...
Read More
Free and Open Source NoSQL Databases. When Free Isn’t Really Free
Free and Open Source NoSQL Databases. When Free Isn’t Really Free
An open source NoSQL database isn’t always free. It might come with limitations, exclusions or lic...
Read More
Processing Structured and Unstructured Data in a NoSQL Database – the Basic Rules
Processing Structured and Unstructured Data in a NoSQL Database – the Basic Rules
Learn the difference between structured and unstructured data within databases and how machine learn...
Read More